
Enhancing an Existing Python Learning Tool to Make It More 

First-Year Friendly 

 

 

ABSTRACT  

The demand for programming skills in the workplace is swiftly 

increasing, however the supply is growing at a much slower pace.  

Part of the reason is that first-year university students are 

struggling in their introductory programming courses, resulting in 

them feeling demotivated and eventually deregistering from the 

courses.  Tools do exist which assist students in growing their 

skills, these tools may however not be simple enough for a first 

year.  This proposal suggests ways in which Online Python Tutor, 

an existing Python learning tool, can be improved to be more 

beginner friendly and interactive. It also discusses how these 

enhancements can be implemented.  The proposed enhancements 

are an audio code explanation feature, reduced context-switching 

and enhanced visualization and interactivity. 

KEYWORDS 

Context Switching, Visualization, Audio Generation, Interactivity 

 

1 PROJECT DESCRIPTION 

Computing is a practice that is rapidly growing worldwide, and 

coding is a skill that is being incorporated into many industries 

[8].  It is becoming crucial for all individuals (not just those in 

STEM) to possess the skill [8].  Seeing that the demand for coding 

skills in the workplace is increasing, how educational institutions 

approach the teaching of the subject is critical.    

Many first years are arriving at tertiary institutions without any 

prior coding experience.  Seeing that coding requires a different 

way of thinking and is not like any of the subjects first year 

students did in high school, adapting to the course is extremely 

challenging.  First year students are failing to grasp the 

fundamentals of programming [6]. These fundamentals include 

loops, if-statements and understanding the concept of variables. 

As a result, the drop-out and failure rates for computer science 

students doing introductory computer science courses are 

extremely high [2].  Introductory programming, therefore, plays a 

critical role in determining whether students take part in learning 

the skill of coding.  Steps need to be taken to ensure that students 

with no prior coding experience have access to platforms which 

assist them in fully grasping the basics of the skill.  Platforms do 

exist which thrive to provide beginner programmers with an 

opportunity to master the basics of Python by allowing them to 

step through their code and see the effects of each line of code on 

the overall program.  These platforms may however not be basic 

enough for first year students.  Besides providing error messages 

and showing the user the effects of each line of code, the 

platforms have no other features which assist students in getting a 

better understanding of their code.    

The aim of this project is to investigate the effectiveness and 

usability of an introductory python learning application that 

consists of an audio feature, reduced context switching and 

enhanced visual and interactive features. This project will mainly 

focus on improving the usability and effectiveness of Online 

Python Tutor, focusing on loops, if-statements, and assignment of 

variables.  

2 PROBLEM STATEMENT 

Computing Tools which provide users with the opportunity to 

improve their Python skills by providing a platform for users to 

step through their code and see the effects of each line do exist, 

they, however, may not be efficient enough to teach a beginner 

programmer how to code.  The specific tool the project will be 

adding to is Online Python Tutor which is open source and 

incorporates a simplified and visual debugger [7] (Please see 

Appendix D).  Online Python Tutor is a web application that 

allows a user to enter a piece of code and provides them with a 

visual representation of that code.  As each line of code is 

executed, the effect of each line is displayed in the code 

visualization tool.  The output of the code is also provided as well 

as error messages when an error is detected.  The application has 

not been used at the University of Cape Town; however, its 

success can be seen by the fact that it is utilized in top universities 

such as MIT, University of Washington, and UC Berkeley to 

teach first year students Computer Science [7].  In 2013 it was 

reported that over 30,000 individuals used Online Python Tutor 

per month [7].  The web application has been included in 3 web 

based digital Python textbook projects [7].  The learning tool may, 

Siviwe Qolohle 
Department Of Computer Science 

University of Cape Town 

Cape Town, Western Cape 

qlhsiv001@myuct.ac.za 

Mufhulufheli Mabilo 
Department Of Computer Science 

University of Cape Town 

Cape Town, Western Cape 

mblmuf001@myuct.ac.za 

 



 

 

 

 

however, not be as user-friendly for a beginner programmer.  The 

tool only caters to the visual and the reading/writing learning 

styles.  In both the code visualization tool and the error messages, 

complex terminology, which beginners may not understand, is 

used.  Although Online Python Tutor does provide a visual 

debugger, it is not as clear to understand for students as it only 

highlights the current line the program is interpreting but not the 

variables being changed and/or referred to.    

We propose the following features be added to the Online Python 

Tutor web application to make it more usable and beneficial for 

beginner programmers:   

1. Enhanced Visualization.  Incorporating visualization into 

the teaching of programming helps students graphically 

understand how a program works [9].  It helps them see how 

objects are affected by sequences of instructions [4].  

Proposed visualization features are:  

1.1. A simplified code visualisation tool, fully showing 

how the frames interact with the objects.  The code 

visualisation tool will also highlight the variables and 

objects being affected by each line of code (as it is 

executed). 

1.2. Unlike with Online Python Tutor where the entire line 

is outlined in red where there is an error, the specific 

error in the line will be highlighted.  The aim of this is 

to assist the user in quickly finding their error. 

1.3. Explanations will be given when the user hovers over a 

specific section.  For example, in the simplified code 

visualisation tool, when the user hovers over the word 

‘position’ (of a created list), an explanation of what the 

word represents will be given.  

2. Enhanced Interactivity.  Interactivity allows students to 

interact with the code and gives them a deeper understanding 

of how the code operates.  Interactivity also often tests 

whether students have fully understood the code [3].  The 

proposed interactivity feature is the introduction of a testing 

feature. To test whether the student has fully grasped the 

specific coding topic, they will be given a piece of code 

where the values of variables will change as the code goes 

and at different lines, the user will be asked to give the 

updated value of a specific variable.  There will be tests for 

the three fundamental coding topics the project will be 

focusing on (if-statements, loops, and assignment of 

variables).  

3. Audio Explanations.  Not all students are visual learners or 

learn best via reading or writing [11].  Online Python Tutor 

currently only makes use of the above stated learning styles.  

The inclusion of another method of teaching the content 

allows the platform to cater to more students and their 

learning styles.  An aim of this project is to cater to another 

learning style.  This specific style is the auditory style, where 

an individual is more receptive to content once they hear it 

[11].  The proposed feature is therefore an audio feature 

where more comprehensive explanations are given for the 

most common error messages and for code that students may 

be unable to understand.  The explained code includes loops, 

if-statements and assignment of variables. 

4. Reduced Context Switching.  Context switching is the 

alternating between two interfaces when completing a task.  

This can have a negative effect on the learning process as it 

results in a large cognitive load [1]. When it comes to 

coding, a reduced cognitive load reduces distractions and 

allows one to fully focus on the code.  This reduces the 

amount of time it takes for one to fully understand the code.  

The feature that will be incorporated to reduce context 

switching is an additional window in the interface consisting 

of content explaining the coding concepts we will be 

focusing on, as well as tasks students will need to solve using 

code. 

The aims for the project are:  

1. Improve Visualisation features of Online Python Tutor. 

2. Create an interactive testing mode for the web 

application which provides students with a code and 

tests their understanding of that code. 

3. Create an audio feature which explains common errors 

as well as loops, if-statements, and assignment of 

variables using audio. 

4. Create a content window which provides explanations 

for the coding topics the project will be focusing on, as 

well as tasks students will need to complete using code. 

3 PROCEDURES AND METHODS 

3.1 Software Architecture 

The platform will be implemented in three-layered architecture.  

Please see Appendix C for a diagram of the Architecture.  

 

The following are the main modules that will make up the web 

application.  The Parser, Interpreter and Trace Generator Modules 

used will be the ones used in the Online Python Tutor web 

application. 

   

3.1.1 Frontend. The frontend will be implemented using HTML, 

CSS, and JavaScript. The frontend provides a user-friendly 

interface for submitting python code, viewing the execution code, 

voice step through of code, and interacting with the visualization. 

The frontend also includes features like code highlighting, 

zooming, and panning which improves user experience and 

reduces context switching.  

3.1.2 Backend. The backend will be implemented using Python 

and it will provide a Rest API for communication with the 

frontend. The backend will include modules for parsing, 

interpreting, and generating the execution trace of Python code. It 



 

 

 

will also include a database layer for storing user data and session 

information.  

3.1.3 Parser. The parser module will be responsible for 

converting the user’s Python code into an abstract syntax tree. It 

will be done using the python built-in AST module, which 

provides a simple interface for parsing Python code.  

3.1.4 Interpreter. The interpreter module will be responsible for 

simulating the execution of the Python code and generating the 

execution trace. The interpreter will be implemented as a stack-

based interpreter, which will be maintaining a stack of frames that 

will be representing the call stack of the program.  

3.1.5 Trace Generator.  The trace generator will be mainly 

responsible for processing the list of events generated by the 

interpreter and it will be converting them into a format that can be 

displayed in the visualization. Secondly it will also perform 

additional processing, such as identifying loops and conditionals 

in the code and will be highlighting them in the visualization.  

3.1.6 Visualization Engine. The visualization engine will be 

responsible for displaying the execution trace in an interactive 

animation. The visualization engine however will be implemented 

using HTML, CSS, and JavaScript similar with front-end and the 

features provides includes highlighting, zooming, and panning.  

3.1.7 Audio feature. This module will receive Python code as 

input, and it will use a Python parser to generate a tree-like 

structure that will represent syntax and semantics. The parser that 

will be used will be the built-in AST module in python, which is 

capable of parsing python code and generating an AST that 

represents the structure of the code. With the AST we will need to 

convert it to human-readable format using a audio engine.   

The way in which the audio feature will work is that there will be 

a specific sentence structure for if-statements, loops, and 

assignment of variables.  Each sentence will consist of constants, 

which are the words that will stay the same regardless of the 

sentence, and variables, which are words that change according to 

the specific sentence.  For example, if a line had the following: 

“Apple = 9”.  The explanation would be, “The variable Apple is 

equal to 9”.  In this example, the constants are “The variable” and 

“is equal to” and the variables are “Apple” and “9”.  When it 

comes to error messages, the most common errors will have audio 

explanations.  The structure will be like the structure explained 

above for the loops, if-statements, and assignment of variables.  

An example of an error message for an undefined variable is: “the 

value ‘m’ does not exist, please first assign a value to ‘m’”.  An 

example of an error message for ‘index out of bounds’ is: “the 

array or string is of length x, meaning positions go up to x-1. This 

means position y (entered position) does not exist.”. 

3.1.8 Database. The database module will be developed using a 

modern database management system which will be MySQL and 

a custom ORM (Object-Relational Mapping) layer will also 

provide a simple and consistent interface for interacting with the 

database.    

3.2 Implementation Strategy 

An agile development plan will be followed. This means that we 

will constantly be following the cycle of designing, then 

developing then evaluating.  In the early iterations, the developing 

stage will consist of prototype design.  In each stage the prototype 

will develop eventually going from being low fidelity to high-

fidelity.  In the evaluation stage of the early iterations, discount 

usability techniques will be used rather than participants.  This is 

to save time and reduce the number of times participants are 

recruited.  The discount usability technique which will be used in 

the early stages is heuristic evaluation.  This process does not 

require participants and can simply be completed by comparing 

the product to the Ten Usability Heuristics. 

3.3 Participants 

Participants will be recruited for the testing of the web 

application.  The participants will be students from the University 

of Cape Town enrolled in either CSC1011H or CSC1010H.  20 

participants will be recruited, and they will be recruited from our 

supervisor’s lectures.  

3.4 Evaluation 

We will evaluate the system by making use of both qualitative and 

quantitative methods.  The evaluations will focus on determining 

the usability and effectiveness of the four different features.  To 

determine the usability, qualitative methods will be used.  For 

each of the four features, individuals will be given tasks to 

complete.  The users will be observed as they navigate through 

that specific feature.  They will be given no assistance as they 

navigate through the application.  For example, with the audio 

feature, the user will be asked to play the audio for a specific code 

or error.  The time the user takes to complete the task, the errors 

made and the questions they ask will all be noted.  To determine 

the effectiveness of each of the features, quantitative testing 

methods will be used.  A survey will be conducted consisting of 

four sections.  Each section will focus on each feature.  The 

survey will consist of a Likert Scale (ranging from 1 to 5) and the 

users will be asked to rate the features according to specific 

topics.  For example, the user will be asked to rate the helpfulness 

of each feature.  

4 ANTICIPATED OUTCOMES 

4.1 System 

The completed system will consist of a web application, which 

will be deployed on the web. The web application will consist of 

an audio feature which explains errors and the above stated coding 

topics; a visualization feature which makes the interface more 

beginner-friendly; a content window which reduces context 

switching and an interactivity feature which allows users to test 

their understanding of the topics. 

4.2 Expected impact  

The system provides a visual representation of Python code 

execution. The system will be able to help first year computer 



 

 

 

 

science students to better understand how code works, which 

leads to better code quality and fewer errors.  

The system’s accessibility and ease-of-use will make it an 

attractive tool for students. The overall expected impact of the 

system is to assist the first years in improving their Python coding 

skills. 

4.3 Key success factors  

• Beginner friendly interface. The system will have an 

intuitive and easy-to-use interface, consisting of 

beginner friendly visualizations which assist students in 

grasping the basics of coding.  

• Successful implementation of new interactive feature. 

The system’s new interactive feature aims at allowing 

students to test their understanding of the specified 

fundamental topics in coding. 

• Successful implementation of audio feature: feature 

should provide an audio description of common error 

messages as well as the three coding topics the project 

focuses on.   

• Effectiveness and usability of features: from the 

evaluations, all four features need to be considered 

usable and effective. 

• Web-based platform. The system will require no 

installation or setup, making it accessible to every 

student. 

 

5 ETHICAL, PROFESSIONAL AND LEGAL 

ISSUES 

The participants in the study will be Computer Science students 

from the University of Cape Town.  The students will either be 

enrolled in CSC1010H or CSC1011H.  Seeing that all the 

participants are from UCT, ethical clearance from UCT will be 

required prior to testing the application with the participants [12].  

Our request to use these students as participants will need to be 

reviewed by the Science Faculty Ethics subcommittee, followed 

by Student Affairs. Identifiable participant information will not be 

released, and the tests will cause no physical harm to the 

participants.  All research and software produced because of this 

project will be the Intellectual Property of UCT and code will be 

open source [13].  

 

6 RELATED WORK 

Many Python learning tools have been created to serve as a 

supplementary platform for individuals to improve their 

programming skills.  These tools (including Online Python Tutor) 

are, however, not basic enough for beginners.  They do on the 

other hand give ideas on how to approach creating a 

supplementary learning tool for beginners.   

UUhistle is a Python learning tool that focuses on using 

visualization and interactivity to improve one’s understanding of a 

piece of code [5].  The program has a predominantly visual mode 

which is referred to as the Controlled Viewing mode.  The 

program also has a more interactive mode that is referred to as the 

VPS (Visual Program Simulation) mode.  The VPS mode allows 

the user to take on the role of the computer by, for example, 

making the changes in the debugger as the code is stepped 

through line by line.  The Controlled Viewing mode can basically 

be seen as a more complicated version of Online Python Tutor 

with extra features on the debugging side of the program.   

Improv is a teaching tool that allows Live-Coding and reduces 

context switching [1].  Multiple features can be displayed on one 

page.  For example, on one interface (similar to a PowerPoint 

slide) one can find the code, the terminal and the set of slides the 

educator will be using to teach a certain topic.   

TigerJython is a Python environment that helps learners recover 

from errors by providing users with comprehensive error 

messages as well as a suggestion on how to correct the error [10].  

This project aims to incorporate into the final product, one of the 

goals of Improv which is to reduce context switching.  Instead of 

providing users with comprehensive error messages and potential 

solutions as TigerJython does, this project will focus on 

highlighting the specific error in the user’s code.  

 

6 PROJECT PLAN 

6.1 Risks 

Please see the Risk Table in Appendix A. The probability and 

potential impact of the risk are rated out of 10.  How the potential 

issue will be monitored (Monitoring) and prevented (Mitigation) 

is included.  Should the risk occur, how it will be managed is also 

included (Management).   

 

6.2 Timeline 

Please see the Gantt Chart in Appendix B 

 

6.3 Resources Required 

6.3.1 Software: The web application will be created using HTML, 

CSS, Python, React Native, Node.js, visualisation engine using 

iframe embedding, MySQL database, audio generation engine and 

Rest APIs.  Participants will complete the surveys using Google 

Forms.  

6.3.2 Hardware: Both researchers should have access to their own 

personal computers.  The computers will be used for both the 

development of the web application as well as for the testing of 

the web application.   

6.3.3 Human Resources: Participants who are enrolled in 

introductory programming courses at the University of Cape 

Town.  

 



 

 

 

6.4 Deliverables  

Multiple deliverables are required for the project.  Below is a list 

of deliverables consisting of both those that are completed as well 

as those that still need to be completed:    

• Two Literature Reviews  

• Project Proposal  

• Revised Project Proposal   

• 2 Iterations of Prototype 

• Final Paper Draft  

• Project Paper Final Submission   

• Project Code Final Submission   

• Final Project Demonstration   

• Final Web application  

• Poster   

• Website  

 

6.5 Milestones  

Important milestones include the submission of the final project 

proposal on the 5th of May, the submission of final project paper 

on the 11th of September and the submission of final project code 

on the 15th of September.  Please see Gantt chart for more 

information.  

 

6.6 Work Allocation  

Work will be split amongst the team members in the following 

way: Siviwe Qolohle will focus on the Enhanced Visualization 

feature and the Enhanced Interactivity feature.  Mufhulufheli 

Mabilo will focus on the Reduced Context Switching feature and 

the Audio feature.  Should one member not be able to complete 

their section, the other member will still be able to continue their 

section and evaluate it.  This is because each of the four sections 

can be evaluated independently.  

REFERENCES 
  

[1] Charles H. Chen and Philip J. Guo. 2019. Improv: Teaching 

Programming at Scale via Live Coding. In Proceedings of the Sixth 

(2019) ACM Conference on Learning @ Scale (L@S '19). Association 

for Computing Machinery, New York, NY, USA, Article 9, 1–10. 

https://doi-org.ezproxy.uct.ac.za/10.1145/3330430.3333627  

[2] G. Silva-Maceda, P. David Arjona-Villicaña and F. Edgar 

CastilloBarrera, "More Time or Better Tools? A Large-Scale 

Retrospective Comparison of Pedagogical Approaches to Teach 

Programming," in IEEE Transactions on Education, vol. 59, no. 4, pp. 

274-281, Nov. 2016, doi: 10.1109/TE.2016.2535207   

[3] Ibrahim Cetin & Christine Andrews-Larson (2016) Learning sorting 

algorithms through visualization construction, Computer Science 

Education, 26:1, 27-43, DOI: 10.1080/08993408.2016.1160664   

[4] Imre BENDE. 2022. Data Visualization in Programming Education. 

Acta Didactica Napocensia 15, 1 (2022), 52-60. DOI: 

https://doi.org/10.24193/adn.15.1.5   

[5] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: a software tool for visual 

program simulation. In Proceedings of the 10th Koli Calling 

International Conference on Computing Education Research (Koli 

Calling '10). Association for Computing Machinery, New York, NY, 

USA, 49–54.https://doiorg.ezproxy.uct.ac.za/10.1145/1930464.1930471     

[6] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, 

Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, 

Ian Utting, and Tadeusz Wilusz. 2001. A multi-national, 

multiinstitutional study of assessment of programming skills of first-

year CS students. SIGCSE Bull. 33, 4 (December 2001), 125–180. 

https://doiorg.ezproxy.uct.ac.za/10.1145/572139.57218 

[7] Philip J. Guo. 2013. Online python tutor: embeddable web-based 

program visualization for cs education. In Proceeding of the 44th ACM 

technical symposium on Computer science education (SIGCSE '13). 

Association for Computing Machinery, New York, NY, USA, 579–584. 

https://doi-org.ezproxy.uct.ac.za/10.1145/2445196.2445368   

[8] Robert P. Taylor. 1977. Teaching programming to beginners. In 

Proceedings of the seventh SIGCSE technical symposium on Computer 

science education (SIGCSE '77). Association for Computing Machinery, 

New York, NY, USA, 88–92. https://doi-

org.ezproxy.uct.ac.za/10.1145/800104.803365   

[9] Šimoňák, Slavomír..2014 "Using algorithm visualizations in computer 

science education" Open Computer Science, vol. 4, no. 3, pp. 183-190. 

https://doi.org/10.2478/s13537-014-0215-4 
[10] Tobias Kohn and Bill Manaris. 2020. Tell Me What's Wrong: A Python 

IDE with Error Messages. In Proceedings of the 51st ACM Technical 

Symposium on Computer Science Education (SIGCSE '20). Association 

for Computing Machinery, New York, NY, USA, 1054–1060 

[11] 2021. 8 Types of Learning Styles | The Definitive Guide. Bay Atlantic 

University. Retrieved May 5, 2023 from https://bau.edu/blog/types-of-

learning-styles/ 

[12] UCT Computer Science Department. 2018. Applying for Ethics 

Clearance for a Study or Experiment. Retrieved April 19, 2023 from 

https://www.cs.uct.ac.za/Ethics     

[13] University of Cape Town. 2011. University of Cape Town Intellectual 

Property Policy. Retrieved April 19, 2023 from 

http://www.uct.ac.za/sites/default/files/image_tool/images/328/about/pol

icies/Policy_Intellectual_Property_2011.pdf 

 

 

 

 

 

  

https://doi-org.ezproxy.uct.ac.za/10.1145/3330430.3333627
https://doiorg.ezproxy.uct.ac.za/10.1145/572139.57218
https://bau.edu/blog/types-of-learning-styles/
https://bau.edu/blog/types-of-learning-styles/
https://www.cs.uct.ac.za/Ethics
http://www.uct.ac.za/sites/default/files/image_tool/images/328/about/policies/Policy_Intellectual_Property_2011.pdf
http://www.uct.ac.za/sites/default/files/image_tool/images/328/about/policies/Policy_Intellectual_Property_2011.pdf


 

 

 

 

Appendix A 

 

  

Risk  Proba-

bility  

Impact  Monitoring  Mitigation  Management  

Delay in 

obtaining 

Ethical 

Clearance  

5  10   Frequently checking emails  Submit Request as soon as 

possible  

Reduce scope to ensure 

final product is completed 

on time  

Integrating 

the various 

APIs  

4  10  Frequent testing and logging  Keep APIs up-to-date and 

consider using API 

management tools  

Will use modular design 

and document everything  

Loss of Data  3  10  Check that the saved data is 

the most recently edited data  

Ensure data is backed up  Distribute more surveys 

and gather new 

participants  

Conflict 

between 

team 

members  

2  6  Frequent checkup sessions  Maintain good 

communication between 

group members  

Have a session where all 

concerns are voiced  

Not 

obtaining 

enough 

participants  

1  8  Check how many individuals 

are volunteering daily  

Recruit participants as soon 

as possible  

Broaden group of potential 

participants (with 

permission from 

supervisor)  



 

 

 

Appendix B 



 

 

 

 

 Appendix C   

 
 

 

 

  



 

 

 

Appendix D   

 

 

Online Python Tutor 

 

 

 

  



 

 

 

 

 
 


